

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE POSGRADO MAESTRÍA EN CIENCIAS (NEUROBIOLOGÍA) Programa de actividad académica

Denominación: Introducción a los modelos lineales mixtos generalizados					
Clave:	Semestre(s):	Campo de Conoc	imiento: Metodolog	gía y Estadística	No. Créditos: 4
Carácter: Optativa		Horas		Horas por semana	Horas al Semestre
Tipo: teórica		Teoría: 2	Práctica: 0	2	32
Modalidad: Presencial y a distancia		•	Duración del prog	rama: Semestral	

Seriación:	Sin Seriación (X)	Obligatoria ()	Indicativa ()

Objetivos generales:

En análisis de datos experimentales típicamente se utilizan los ANOVA como la principal herramienta para hacer inferencia estadística. Sin embargo, pocas veces se considera la distribución de probabilidad que da origen a los datos, aun cuando existe evidencia de que en muchas ocasiones los datos provienen de distribuciones diferentes de la normal (Blanca et al., 2013; Bono et al., 2017), y aunque el ANOVA ha mostrado ser robusto a la falta de normalidad, su uso es inadecuado con datos multinomiales, ordinales o de conteo (Aiken et al., 2015). En este contexto es preferible el uso de técnicas estadísticas adecuadas a los datos en cuestión, en lugar de estrategias alternativas que permitan alcanzar la normalidad (e.g. transformaciones) o la estadística no paramétrica. Por lo que, en diferentes áreas (e.g. ecología, neurociencia, biología evolutiva, psicología educación, salud, etc.) se ha hecho común el uso de los Modelos Lineales Generalizados (MLG) y los Modelos Lineales Mixtos Generalizados (MLMG). En este curso los estudiantes conocerán y utilizarán los MLG. Los cuales representan una clase de modelos de regresión de efectos fijos que pueden aplicarse a variables de respuesta provenientes de distribuciones de probabilidad diferentes a la normal (i.e. conteo, dicotómica, ordinal, etc.) (Hedeker, 2005), Estos modelos incluyen, por ejemplo, la regresión logística, Poisson, lineal y polinomial, Adicionalmente, se analizarán los MLMG, los cuales estiman efectos aleatorios, que son útiles cuando los datos provienen de estructuras jerárquicas o se desea determinar la variación producida por los grupos, el tiempo, el espacio o las unidades de análisis (Bolker et al., 2009). De igual forma, se analizará estrategias para evaluar la bondad de ajuste de los modelos revisados y las estrategias comunes para la selección del mejor modelo.

Objetivos específicos:

El alumno:

- Formulará problemas estadísticos en términos de los modelos lineales generalizados a fin de representar adecuadamente las variables de un diseño experimental y realizar inferencia sobre el mismo.
- Implementar, interpretar y evaluar el ajuste de modelos lineales generalizados.
- Describir e interpretar la teoría que básica que subyace a los modelos lineales
- Implementar, interpretar y evaluar el ajuste de modelos lineales mixtos generalizados.

Realizar inferencia sobre los resultados del modelo y evaluar sus limitaciones

	Índice Temático			
Haidad	T	Horas		
Unidad	Tema	Teóricas	Prácticas	
1	Introducción al modelamiento estadístico y a los modelos de regresión lineal	2	0	
2	Extensión de los modelos estadísticos para distribuciones no normales	9	0	
3	Modelos para proporciones: GLM binomial	7	0	
4	Modelos para datos de conteo: GLM Poisson o binomial negativo	7	0	
5	Modelos lineales mixtos generalizados	7	0	
	Total de horas:	32	0	
	Suma total de horas:	3	2	

Unidad	Tema y Subtemas
	Introducción al modelamiento estadístico y a los modelos de
	regresión lineal
	Tipos de variables
1	Modelos de regresión y su interpretación
	Precisión y parsimonia
	Evaluación de supuestos y ajuste del modelo
	Procedencia de los datos
	Extensión de los Modelos estadísticos para distribuciones
	no-normales
	Definición de MLG
	Transformaciones y funciones liga
2	Devianza
	Estimación e Inferencia
	Modelos anidados y no anidados
	 Métodos automatizados en la selección de Modelos
	Diagnóstico
	Modelos para proporciones: GLM Binomial
	Función liga
3	Probit, logit, log-log
	Sobre dispersión
	Diagnóstico
	Modelos para datos de conteo: GLM Poisson o Binomial
	Negativo
4	Modelación de conteos o tasas
	Sobredispersión
	Diagnóstico
	Modelos Lineales Mixtos Generalizados
_	Efectos Aleatorios: Anidados, cruzados y jerárquicos
5	Estimación del modelo de efectos fijos y aleatorios
	Construcción de modelos
	Evaluación de los supuestos del modelo

Bibliografía Básica:

Dunn, P. K., & Smyth, G. K. (2018). Generalized Linear Models with Examples in R.

Faraway, J. J. (2016). Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Second Edition.

West, B. T., Welch, K. B., & Galecki, A. T. (2014). Linear Mixed Models: A Practical Guide Using Statistical Software, Second Edition.

Bibliografía Complementaria:

Aiken, L. S., Mistler, S. A., Coxe, S., & West, S. G. (2015). Analyzing count variables in individuals and groups: Single level and multilevel models. Group Processes & Intergroup Relations, 18(3), 290-314. https://doi.org/10.1177/1368430214556702

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127-135. https://doi.org/10.1016/j.tree.2008.10.008

Bono, R., Alarcón, R., & Blanca, M. J. (2021). Report Quality of Generalized Linear Mixed Models in Psychology: A Systematic Review. Frontiers in Psychology, 12. https://www.frontiersin.org/articles/10.3389/fpsyg.2021.666182 Bono, R., Blanca, M. J., Arnau, J., & Gómez-Benito, J. (2017). Non-normal Distributions Commonly Used in Health, Education, and Social Sciences: A Systematic Review. Frontiers in Psychology, 8. https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01602

Sugerencias didácticas: Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios Lecturas obligatorias Trabajo de Investigación Prácticas de taller o laboratorio Prácticas de campo Otros:	(X) () () () () () () () () () (() () () (X) () (X) (X) (X)
---	---	--

Perfil profesiográfico:

I docente debe contar con grado de maestro o doctor y tener experiencia en docencia e investigación en el campo