

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE POSGRADO MAESTRÍA EN CIENCIAS (NEUROBIOLOGÍA) Programa de actividad académica

Denominación: Bioinformática aplicada al análisis de transcriptómica diferencial					
Clave:	Semestre(s): 1	Campo de Conocimiento: Genomica y bioinformática No. Créditos: 4			
Carácter: Optativa		Horas		Horas por semana	Horas al Semestre
Tipo: Práctica		Teoría: 2	Práctica: 0	2	32
Modalidad: Laboratorio		Duración del programa: Semestral			

Carácter: Optativa	Horas		Horas por semana	Horas al Semestre
Tipo: Práctica	Teoría: 2	Práctica: 0	2	32
Modalidad: Laboratorio		Duración del programa: Semestral		

Seriación: Sin Seriación (X) Obligatoria () Indicativa () Objetivos generales:

El alumno:

- Entenderá los principios y los conceptos bioquímicos, de biología celular y computacionales que subyacen a las diferentes técnicas para comparar expresión diferencial.
- Conocerá el software y los recursos computacionales para transformar los datos de secuencia en hipótesis y conocimientos biológicos.
- Conocerá las ventajas, limitantes y aplicaciones de cada técnica transcriptómica.

Objetivos específicos:

El alumno:

- Practicará pipelines bioinformáticos básicos para el procesamiento y análisis de los datos transcriptómicos
- Será capaz de articular el razonamiento para elegir cada modalidad de análisis para su hipótesis biológica.

Índice Temático				
Unidad	Tema	Horas		Profesor
Unidad	Tellia	Teóricas	Prácticas	
1	Expresión diferencial bulk	6	6	Wilbert Gutiérrez Sarmiento, Alfredo Varela Echavarría
2	single cell RNA-seq	4	6	Haiku Gómez Velázquez, Jerónimo R. Miranda Rodríguez
3	Transcriptómica espacial	4	6	Jerónimo R. Miranda Rodríguez
	Total de horas:	14	18	
	Suma total de horas:	3	32	

Contenido Temático

Unidad	Tema y Subtemas
1	Expresión diferencial bulk 1.1 Fundamento teórico de la técnica de RNA-seq 1.2 Aplicaciones de la expresión diferencial 1.3 Alineamiento, matriz de conteo y normalización 1.4 Análisis de expresión diferencial y visualización
2	2. single cell RNA-seq 2.1 Fundamento teórico y conceptual de las técnicas de single cell 2.2 Control de calidad, normalización y corrección. Selección de features 2.3 Algoritmos de clustering y reducción de la dimensionalidad 2.4 Expresión diferencial e inferencia de trayectorias
3	Transcriptómica espacial

3.2 Control de calidad, normalización y corrección. Selección de <i>features</i> 3.3 Genes diferencialmente expresados en el
espacio
3.4 Vecindad y nichos celulares
3.5 Integración espacial y single cell

Bibliografía Básica:

- Love, M.. I. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, 15. 550.
- Kharchenko, P.V., 2021. The triumphs and limitations of computational methods for scRNA-seq. Nature Methods, 18(7), pp.723-732.
- Ståhl, P.L., Salmén, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson, J., Giacomello, S., Asp, M., Westholm, J.O., Huss, M. and Mollbrink, A., 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 353(6294), pp.78-82.
- Tutorial en línea: http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

Bibliografía Complementaria:

- Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. and Kingsford, C., 2017. Salmon provides fast and bias-aware quantification of transcript expression. Nature methods, 14(4), pp.417-419.
- Chari, T. and Pachter, L., 2023. The specious art of single-cell genomics. PLoS Computational Biology, 19(8).
- Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S. and Zhuang, X., 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science, 348(6233)
- Moses, L. and Pachter, L., 2022. Museum of spatial transcriptomics. Nature Methods, 19(5), pp.534-546.
- -Yang, Zheng Rong. Biological Pattern Discovery With R: Machine Learning Approaches. Singapore, World Scientific Publishing Company, 2021 (Cap 6, Gene expression pattern discovery) *
- Rabadan, R. and Blumberg, A. J., 2019. *Topological Data Analysis for Genomics and Evolution: Topology in Biology*, Cambridge, Cambridge University Press. (Cap 7, Single Cell Expression data) *
- * En la Biblioteca UNAM Campus Juriquilla

Sugerencias didácticas: Exposición oral () Exposición audiovisual () Ejercicios dentro de clase (X) Ejercicios fuera del aula () Seminarios () Lecturas obligatorias () Trabajo de Investigación () Prácticas de taller o laboratorio (X) Prácticas de campo () Otros:	Mecanismos de evaluación de aprendizaje de los alumnos: Exámenes parciales Examen final escrito Trabajos y tareas fuera del aula Exposición de seminarios por los alumnos Participación en clase (X) Asistencia Seminario Otras:
--	---

Perfil profesiográfico:

Alfredo Varela Echavarría.

Wilbert Gutiérrez Sarmiento. Doctor en Ciencias de los Alimentos y Biotecnología. Realiza trabajos de análisis de datos transcriptómicos para estudios de expresión diferencial. Actualmente, Investigador Posdoctoral en el Laboratorio A03 del Instituto de Neurobiología – UNAM.

Haiku Gómez. Doctorado en Ciencia y tecnología con Orientación en Biomédica. Experiencia en la enseñanza y la aplicación a la investigación de técnicas de *clustering* y reducción de la dimensionalidad en datos biológicos. Actualmente se desempeña como investigador post-doctoral en el Instituto de Biotecnología - UNAM.

Jerónimo R. Miranda Rodríguez. Doctorado en bioquímica. Formación en ciencias genómicas, cuenta con amplia experiencia en genómica, microscopía y análisis de scRNA-seq. Actualmente es Investigador Asociado C TC en el Instituto de Neurobiología - UNAM.

Carta de solicitud en la siguiente página